Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt.

نویسندگان

  • Cynthia M Miracle
  • Timo Rieg
  • Hadi Mansoury
  • Volker Vallon
  • Scott C Thomson
چکیده

Heightened sensitivity of the diabetic proximal tubule to dietary salt leads to a paradoxical effect of salt on glomerular filtration rate (GFR) via tubuloglomerular feedback. Diabetic hyperfiltration is a feedback response to growth and hyperreabsorption by the proximal tubule. The present studies were performed to determine whether growth and hyperfunction of the proximal tubule are essential for its hyperresponsiveness to dietary salt and, hence, to the paradoxical effect of dietary salt on GFR. Micropuncture was performed in four groups of inactin-anesthetized Wistar rats after 10 days of streptozotocin diabetes drinking tap water or 1% NaCl. Kidney growth was suppressed with ornithine decarboxylase (ODC) inhibitor, DFMO (200 mg.kg(-1).day(-1)), or placebo. Single nephron GFR (SNGFR) was manipulated by perfusing Henle's loop so that proximal reabsorption (Jprox) could be expressed as a function of SNGFR in each nephron, dissociating primary effects on the tubule from the effects of glomerulotubular balance. Alone, DFMO or high salt reduced SNGFR and suppressed Jprox independent of SNGFR. Suppression of Jprox was eliminated and SNGFR increased when high salt was given to rats receiving DFMO. ODC is necessary for hyperresponsiveness of the proximal tubule to dietary salt and for the paradoxical effect of dietary salt on GFR in early diabetes. This coupling of effects adds to the body of evidence that feedback from the proximal tubule is the principal governor of glomerular filtration in early diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased expression of ornithine decarboxylase in distal tubules of early diabetic rat kidneys: are polyamines paracrine hypertrophic factors?

Polyamines are small biogenic molecules that are essential for cell cycle entry and progression and proliferation. They can also contribute to hypertrophy. The activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, increases in the early diabetic kidney to enable renal hypertrophy. Inhibition of ODC in early diabetes attenuates diabetic renal hypertrophy ...

متن کامل

Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes.

In early diabetes, the kidney grows and the glomerular filtration rate (GFR) increases. This growth is linked to ornithine decarboxylase (ODC). The study of hyperfiltration has focused on microvascular abnormalities, but hyperfiltration may actually result from a prior increase in capacity for proximal reabsorption which reduces the signal for tubuloglomerular feedback (TGF). Experiments were p...

متن کامل

Ornithine metabolism in male and female rat kidney: mitochondrial expression of ornithine aminotransferase and arginase II.

In the kidney, L-ornithine is reabsorbed along the proximal convoluted tubule (PCT), transported by basolateral carriers, and produced by arginase II (AII). Here, the renal metabolic fate of L-ornithine was analyzed in male and female rats. Kidneys and renal zones were dissected and used for Western blot analysis, immunofluorescence, and electron microscopic studies. Ornithine aminotransferase ...

متن کامل

Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus.

BACKGROUND In early type 1 diabetes mellitus, changes in proximal reabsorption influence glomerular filtration rate (GFR) through tubuloglomerular feedback (TGF). Due to TGF, a primary increase in proximal reabsorption causes early diabetic hyperfiltration, while a heightened sensitivity of the proximal tubule to dietary salt leads to the so-called salt paradox, where a change in dietary salt c...

متن کامل

Salt-sensitivity of proximal reabsorption alters macula densa salt and explains the paradoxical effect of dietary salt on glomerular filtration rate in diabetes mellitus.

GFR varies inversely with dietary NaCl in patients with early type I diabetes and in streptozotocin (STZ)-diabetic rats. To explain this paradox within the laws of physiology, it was hypothesized that it results from heightened sensitivity of the diabetic proximal tubule to dietary salt because changes in proximal reabsorption (Jprox) elicit reciprocal adjustments in GFR through the normal acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 295 4  شماره 

صفحات  -

تاریخ انتشار 2008